ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod

The moment of inertia ( I ) is the rotational equivalent of mass possessed by an object. This proclamation, however, comes with a caveat: massive objects are not created equal. Different objects of equal mass have differing abilities to resist changes in rotational motion. Additionally, the location of an object’s axis of rotation influences itsContinue reading “ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod”

ENERGY AND MOMENTUM: Moment of Inertia and the Parallel Axis Theorem

Inertia is a measure of a system’s ability to resist a change in motion, and it is directly proportional to a system’s massiveness. Such a system or object could be stationary with respect to an observer, or it could move with a constant velocity. When a system moves with constant velocity with respect to anContinue reading “ENERGY AND MOMENTUM: Moment of Inertia and the Parallel Axis Theorem”

KINEMATICS: Where Will The Daredevil Land?

Q: A stuntman equipped with a parachute rides a bicycle over the edge of a 500.0-meter building. The combined mass of the stuntman and his bicycle is 90.0 kg. If the bike moves at 24.2 m/s as it leaves the building’s edge, at what distance from the building’s base must a cushion be placed inContinue reading “KINEMATICS: Where Will The Daredevil Land?”

ROTATIONAL MOTION: What Distance Separates Two Projectiles Revolving Around a Common Center of Mass?

Q: Two projectiles separated by distance ( dt ) revolve around their center of mass ( cm = ½ dt ). Each projectile has a mass ( m ) of 4.81 x 1020 kg, and they have an instantaneous rotational speed ( ⍵ ) of 1.25 x 10-10 rad/s relative to the center of mass.Continue reading “ROTATIONAL MOTION: What Distance Separates Two Projectiles Revolving Around a Common Center of Mass?”

FORCE AND ACCELERATION: What is the mass of the climbing acrobat?

Q: Two acrobats, a pulley, and a rope are used in a circus act. Acrobat 1 rapidly climbs one of the suspended lengths of rope at a distance of 16ft in 2 seconds with a constant acceleration. On the opposite length of rope, acrobat 2 is suspended in an attached chair that remains motionless aboveContinue reading “FORCE AND ACCELERATION: What is the mass of the climbing acrobat?”

FORCE AND ACCELERATION: The Sum of all Torques Must Equal Zero

When a system is in static equilibrium, the sum of the forces acting upon the system must equal zero. In the diagram below, forces F1 and F2 exert torques upon the system: Recall that a torque ( 𝛕 = Fr sin θ ) has the ability to make a system rotate, and it is theContinue reading “FORCE AND ACCELERATION: The Sum of all Torques Must Equal Zero”

FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit

Q: A satellite circles a planet with a tangential velocity of 1.70 x 104 m/s. The orbital radius ( r1 ) is 5.25 x 106 m. A second satellite of equal mass revolves around the same planet with an orbital radius ( r2 ) of 8.60 x 106 m. What is the orbital speed ofContinue reading “FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit”

FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams

Q: Three objects are connected by ropes that pass over massless and frictionless pulleys. As the objects move, the table exerts a force of friction on the middle object. The coefficient of kinetic friction is 0.100. What is the acceleration of the three objects within the system? What is the magnitude of the tension inContinue reading “FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams”

FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems

The law of conservation of energy states that the total energy of an isolated system remains constant. The SI unit of energy is the joule ( J ), and it’s base-unit composition is kg*m2/s2. Energy is the currency needed to perform work, and work is performed upon an object when an applied force moves itContinue reading “FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems”

FORCE AND ACCELERATION: Systems of Torque and the Center of Mass

Thus far, physicists have not developed a concise definition of what constitutes mass and “ free space “. As a consequence, an overly simplistic definition of mass, albeit imperfect, may be used with convenience in laboratory settings. Mass, simply put, occupies free space.  Relatively simple analyses of forces acting upon massive objects can be madeContinue reading “FORCE AND ACCELERATION: Systems of Torque and the Center of Mass”