ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision

1. Momentum is always conserved when collisions occur. Momentum is defined as being a quantity of motion, and it is a product of mass and velocity. A small object travelling with a high velocity has great momentum ( Ex. A bullet ), and a massive object travelling with a low velocity has great momentum (Continue reading “ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision”

ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )

Q: A ( 1kg ) ball of clay moving with a velocity ( vbi ) collides and sticks to the end of a ( 120cm ) rod of uniform mass ( 2kg ). Assuming that the ball and rod are at rest upon a frictionless surface:  ( a ) Where is the new center ofContinue reading “ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )”

ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod

The moment of inertia ( I ) is the rotational equivalent of mass possessed by an object. This proclamation, however, comes with a caveat: massive objects are not created equal. Different objects of equal mass have differing abilities to resist changes in rotational motion. Additionally, the location of an object’s axis of rotation influences itsContinue reading “ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod”

FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit

Q: A satellite circles a planet with a tangential velocity of 1.70 x 104 m/s. The orbital radius ( r1 ) is 5.25 x 106 m. A second satellite of equal mass revolves around the same planet with an orbital radius ( r2 ) of 8.60 x 106 m. What is the orbital speed ofContinue reading “FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit”

ROTATIONAL MOTION: Rotational Inertia

Q: A student sits atop a freely rotating stool holding two dumbbells, each of which has a mass of 3.09 kg. When the student’s arms are extended horizontally outward, the dumbbells are 0.99 m from the axis of rotation. There are 180 degrees of separation between the extended arms. The student rotates with an angularContinue reading “ROTATIONAL MOTION: Rotational Inertia”

ENERGY AND MOMENTUM: Artificial Gravity in a Spinning Spacecraft.

Q: A team of engineers is building a spaceship to go to Jupiter. Their design includes a gravity ring, a spinning section where (in the ring’s reference frame) astronauts are pushed outwards by the centrifugal force.   In their current design, the ring has to spin once every ten seconds in order to provide the sameContinue reading “ENERGY AND MOMENTUM: Artificial Gravity in a Spinning Spacecraft.”