INTRODUCTION TO ELECTRONICS: The Superposition Theorem

Q: How much current flows across R2? What is the voltage drop across R2? A: We begin by evaluating the circuit from two points of view: Vs1 and Vs2. In order to begin our journey, the Vs2 voltage source is shorted: From the vantage point of Vs1, resistor R1 is in series with resistors R2Continue reading INTRODUCTION TO ELECTRONICS: The Superposition Theorem

INTRODUCTION TO ELECTRONICS: Two-Resistor Current Divider Derivation

We have previously seen how parallel circuits with two resistors ( R ) may be added together using specialized techniques. In one such case, the resistors had equal values, and in other cases, the values differed. These resistance values were then used to ascertain how currents ( I ) divide along each branch of theContinue reading INTRODUCTION TO ELECTRONICS: Two-Resistor Current Divider Derivation

INTRODUCTION TO ELECTRONICS: Series-Parallel Circuits

For the most part, the circuits we’ve encountered have been either series or parallel circuits with no deviance from either extreme. The only exception to this trend regarded circuits that had multiple voltage sources positioned within their multi-loop matrix. Adding to this complexity was the fact that these voltage sources could be oriented in anyContinue reading INTRODUCTION TO ELECTRONICS: Series-Parallel Circuits

INTRODUCTION TO ELECTRONICS: Parallel Circuits

We have previously seen how all of the current ( I ) within a series circuit will pass through each resistor ( R ) situated within it. The sum of the energy drops that a coulomb ( C ) of charge loses as it traverses a circuit is equal to the voltage ( V )Continue reading INTRODUCTION TO ELECTRONICS: Parallel Circuits

ELECTRICITY: Direct Current and Parallel Resistors

INTRODUCTION TO DIRECT CURRENT ( DC ) ELECTRONICS : Note: Assuming each resistor ( R ) = 64 Ohms, what is the equivalent resistance of the circuit from points A to B ? Symmetry regarding the flow of electrons is the key to calculating the total resistance ( R ) of this circuit. Let’s suppose theContinue reading “ELECTRICITY: Direct Current and Parallel Resistors”