INTRODUCTION TO ELECTRONICS: The Superposition Theorem

Q: What is the total current ( IT ) and voltage ( V3 ) across resistor R3? A: In order to begin evaluating the circuit from the vantage point of Vs1, we place a short across Vs2 : Within this circuit, negatively charged electrons move upward and across the R3 resistor towards the positively chargedContinue reading INTRODUCTION TO ELECTRONICS: The Superposition Theorem

INTRODUCTION TO ELECTRONICS: Thevenin Voltage and Resistance Determination

Now that a conceptual understanding of Thevenin’s theorem has been established, we are ready to determine the Thevenin voltage ( VTH ) and Thevenin resistance ( RTH ) for an open circuit: The equivalent voltage will represent a system in which the voltage source ( Vs ) has been replaced by a voltage that “Continue reading INTRODUCTION TO ELECTRONICS: Thevenin Voltage and Resistance Determination

INTRODUCTION TO ELECTRONICS: A Conceptual Analysis of Thevenin’s Theorem

A physical system would be meaningless without an observer. Conclusions about electrical systems are oftentimes made from the vantage point of the source ( Vs ), but this need not be the case. If a portion of a circuit is “ opened “, an observer can view the source and other components from the newlyContinue reading INTRODUCTION TO ELECTRONICS: A Conceptual Analysis of Thevenin’s Theorem

INTRODUCTION TO ELECTRONICS: Thevenin’s Theorem and Equivalent Circuits

In the diagram below, a circuit is placed within a box. Next, the circuit is opened on the opposite end of the voltage source inside so that two output terminals are visible. The current ( I ) and potential difference ( V ) in relation to the newly created output terminals is then measured: TheContinue reading INTRODUCTION TO ELECTRONICS: Thevenin’s Theorem and Equivalent Circuits

INTRODUCTION TO ELECTRONICS: Bleeder Current in Multi-Tap Voltage-Divider Circuits

Adding a tap to a series circuit alters the untapped voltage ( V ) output across the resistor ( R ) downstream of it. We will now expand our studies to be inclusive of multi-tap voltage-divider circuits. The objective is to determine the magnitude of the bleeder current ( I3 ) flowing through the lowermostContinue reading INTRODUCTION TO ELECTRONICS: Bleeder Current in Multi-Tap Voltage-Divider Circuits

INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 2 )

In a previous exercise, we saw how the addition of a stiff voltage divider to a two-resistor series circuit lowers the voltage ( V ) drop across the lattermost resistor. We are now ready to examine this phenomena with a circuit that contains unequal resistor values: Q: a. What is the unloaded output voltage?      b.Continue reading INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 2 )

INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )

A series circuit that contains two equal-value resistors ( R ) will split the amount of work ( J ) done by the charges equally: Prior to arrival at R1, a coulomb of charged particles ( I ) will contain 10.0 J of energy available to perform work. After passing through R1, the charges willContinue reading INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )

INTRODUCTION TO ELECTRONICS: Voltage Divider Principle in Series-Parallel Circuits

The voltage-divider formula is expressed as follows: Vx = ( Rx / RT )( Vs ) This formula is used to determine how series resistors ( R ) split voltage drops apart as current passes through them. The net voltage drop across a series circuit’s resistors is always ( ignoring small losses ) equal toContinue reading INTRODUCTION TO ELECTRONICS: Voltage Divider Principle in Series-Parallel Circuits

INTRODUCTION TO ELECTRONICS: Series-Parallel Circuit Branch Identification

Due to the complexity of some series-parallel circuits, it takes time to appropriately identify circuit branches that negate the larger circuit being classified as purely series or parallel. There is no substitute for practice! Prior to using the appropriate mathematics and equations to solve series-parallel circuit problems, visual engagement with a wide variety of circuitContinue reading INTRODUCTION TO ELECTRONICS: Series-Parallel Circuit Branch Identification

INTRODUCTION TO ELECTRONICS: Power in Parallel Circuits

Power is the rate at which energy is deposited within ( or liberated from ) some medium. As pertains to electronics, the watt is a measure of how many joules ( J ) of energy are deposited per second within the resistive elements of a circuit. The SI unit of power is the watt (Continue reading INTRODUCTION TO ELECTRONICS: Power in Parallel Circuits