6,000 Watt Craftsman Generator Instructions: This covers most of the important steps, but other procedures regarding troubleshooting and periodic maintenance can be found within the Craftsman operator’s manual ( https://www.craftsman.com ) From this point onward, we all need to try to get cheap tents that are small enough for 1 person per person in ourContinue reading “SPECIAL TOPICS: 6,000 Watt ( W ) Craftsman Generator Instructions”
Tag Archives: electronics
INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )
A series circuit that contains two equal-value resistors ( R ) will split the amount of work ( J ) done by the charges equally: Prior to arrival at R1, a coulomb of charged particles ( I ) will contain 10.0 J of energy available to perform work. After passing through R1, the charges willContinue reading “INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )“
INTRODUCTION TO ELECTRONICS: Voltage Divider Principle in Series-Parallel Circuits
The voltage-divider formula is expressed as follows: Vx = ( Rx / RT )( Vs ) This formula is used to determine how series resistors ( R ) split voltage drops apart as current passes through them. The net voltage drop across a series circuit’s resistors is always ( ignoring small losses ) equal toContinue reading “INTRODUCTION TO ELECTRONICS: Voltage Divider Principle in Series-Parallel Circuits“
INTRODUCTION TO ELECTRONICS: Series-Parallel Circuits
For the most part, the circuits we’ve encountered have been either series or parallel circuits with no deviance from either extreme. The only exception to this trend regarded circuits that had multiple voltage sources positioned within their multi-loop matrix. Adding to this complexity was the fact that these voltage sources could be oriented in anyContinue reading “INTRODUCTION TO ELECTRONICS: Series-Parallel Circuits“
INTRODUCTION TO ELECTRONICS: Power in Series Circuits
Thus far, we have seen how the net resistance ( R ) to current ( I ) flow within a series circuit is the sum of all the resistors that are present: Rt = R1 + R2 + R3 +…Rn The voltage ( V ) drop that occurs as a coulomb ( C ) ofContinue reading “INTRODUCTION TO ELECTRONICS: Power in Series Circuits“
INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 2 )
The Loop Rule states that the sum of voltage ( V ) rises and drops around a closed loop must equal zero. This observation is an extension of the Law of Conservation of Energy which states that energy is neither created or destroyed, but it has the ability to change form. Furthermore, the direction thatContinue reading “INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 2 )”
INTRODUCTION TO ELECTRONICS: The Voltage-Divider Formula
Thus far, we have seen how the sum of voltage drops across a series circuit is equal to the voltage value of the source ( Vs ): Vs = V1 + V2 + V3 In the aforementioned scenario, three resistors are situated within a non-diverging electrical path; thus, each resistor along the electrical path hasContinue reading “INTRODUCTION TO ELECTRONICS: The Voltage-Divider Formula“
INTRODUCTION TO ELECTRONICS: Series Circuits
A series circuit is one in which electric current ( I ) travels along a closed path that does not split apart: *** Note: Conventional current consists of positive charges that flow from the positively charged anode to the negatively charged cathode. In reality, negatively charged electrons flow in the opposite direction. *** The diagram,Continue reading “INTRODUCTION TO ELECTRONICS: Series Circuits”
INTRODUCTION TO ELECTRONICS: Electron Volts vs. Kilowatt Hours ( Part 1 )
Although related, voltage ( V ) and power ( P ) are fundamentally different entities. The voltage within an electrical system is a measure of how many joules ( J ) of energy each coulomb ( C ) of charge ( q ) carries with it. Power is a measure of the rate at whichContinue reading “INTRODUCTION TO ELECTRONICS: Electron Volts vs. Kilowatt Hours ( Part 1 )”
INTRODUCTION TO ELECTRONICS: Metric Prefix Conversions ( Part 2 )
The number 1 can be formed via the establishment of a ratio of logically related quantities: A = A ( A / A ) = 1 A = B ( A / B ) = 1 And, ( B / A ) = 1 Furthermore, the product of any number multiplied by 1 is theContinue reading “INTRODUCTION TO ELECTRONICS: Metric Prefix Conversions ( Part 2 )”