The voltage ( V ) drops across parallel-circuit resistors ( R ) are equal in magnitude; conversely, the currents ( I ) traveling through parallel branches may or may not be the same. For this reason, parallel circuits are sometimes referred to as being current dividers. Take the following diagram into consideration: Since the R1Continue reading “INTRODUCTION TO ELECTRONICS: The Balanced Wheatstone Bridge“
Tag Archives: force
INTRODUCTION TO ELECTRONICS: Electron Volts vs. Kilowatt Hours ( Part 1 )
Although related, voltage ( V ) and power ( P ) are fundamentally different entities. The voltage within an electrical system is a measure of how many joules ( J ) of energy each coulomb ( C ) of charge ( q ) carries with it. Power is a measure of the rate at whichContinue reading “INTRODUCTION TO ELECTRONICS: Electron Volts vs. Kilowatt Hours ( Part 1 )”
INTRODUCTION TO ELECTRONICS: Energy and Power ( Part 1 )
Although, energy and power are interrelated concepts, they possess distinct identities of their own. Consider the relatively simple task of inflating a balloon. Blowing a small puff of air into a balloon over a short time-interval will cause the balloon to expand slightly before recoiling to its previous state. Breathing more forcefully into a balloonContinue reading “INTRODUCTION TO ELECTRONICS: Energy and Power ( Part 1 )”
ENERGY AND MOMENTUM: The Joule
The International System of Units ( SI ) uses seven base units to describe seven fundamental quantities that can be measured by scientists: Symbol Name Base quantity second ( s ) time meter ( m ) length kilogram ( kg ) mass ampere ( A ) electric current kelvin (Continue reading “ENERGY AND MOMENTUM: The Joule”
AP PHYSICS: Trigonometry and Vector Components
Q: A charged species traveling at a constant velocity ( v ) through a magnetic field ( B ) will experience a force if the direction of motion is at a 900 angle with the B-field. How can trigonometry be used to quantify this phenomena? A: The magnetic force ( Fm ) on the chargedContinue reading “AP PHYSICS: Trigonometry and Vector Components”
FORCE AND ACCELERATION: Net Force Exerted on a Ring
Q: How may we determine the net force ( F ) exerted on the ring below? A: We must first reduce the F1 and F2 vectors into their x/y-components: The F1y and F2y components of F1 and F2 oppose the motion of F3. The net force in the y-direction is as follows: Fnety = F2yContinue reading “FORCE AND ACCELERATION: Net Force Exerted on a Ring”
FORCE AND ACCELERATION: 3-4-5 Right-Triangle Mathematics
Q: Two men attempt to pull a box in the diagram below: What is the resultant force in Newtons ( N ) exerted on the box? A: This is a classic question involving a 3-4-5 right triangle. Trigonometry and the Pythagorean Theorem enable us to solve the problem using the numbers 3, 4, and 5.Continue reading “FORCE AND ACCELERATION: 3-4-5 Right-Triangle Mathematics”
ELECTROSTATICS: Electric Field at the Center of an Equilateral Triangle
Q: Three point charges located at the corners of an imaginary equilateral triangle carry charges of +8 µC, +3 µC, and -5 µC, respectively. A distance of 0.5 m separates the charges from one another. What net electric field ( E-field ) will a positive test charge experience when placed at the triangle’s center? A:Continue reading “ELECTROSTATICS: Electric Field at the Center of an Equilateral Triangle”
ENERGY AND MOMENTUM: What is the final velocity of the hovering disk?
Q: A disk of mass 0.5 kg slides with a constant velocity of 2.4 m/s over an air table before colliding with an elastic band. If the band exerts an average force of 1.4 Newtons on the disk for 1.5 seconds, what is the final velocity of the disc? A1: The disc will experience aContinue reading “ENERGY AND MOMENTUM: What is the final velocity of the hovering disk?”
ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 1 )
Q: Two subatomic particles have a charge ( q1 = q2 = 10-6 C ), and they are located on the x-axis at coordinates ( -1m, 0m ) and ( 1m, 0m ). Please calculate the following: The electric field due to the charges when a positive test charge ( P ) has x/y-coordinates ofContinue reading “ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 1 )”