INTRODUCTION TO ELECTRONICS: Conventional Current, Kirchhoff’s Laws, Magnetic Fields, and the Right-Hand Rule

Conventional current refers to the convention in which electrical current ( I ) is considered to be a flow of positive charges. The usefulness of this convention is readily observable when dealing with Kirchoff’s Laws ( or Rules ) and the analysis of magnetic fields that encircle a conductor that carries a conventional current. OfContinue reading “INTRODUCTION TO ELECTRONICS: Conventional Current, Kirchhoff’s Laws, Magnetic Fields, and the Right-Hand Rule”

INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 5 )

We are now ready to complete the Part 3 exercise using Kirchhoff’s Node and Loop Rules: Due to the presence of nodes at points C and E, differing current ( I ) values will be used to evaluate the voltage ( V ) drops that occur around each loop. There are three unique circuit pathwaysContinue reading INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 5 )

INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 4 )

Prior to completion of the previous lecture’s circuit problem, some additional practice identifying nodes and branches within a multi-loop circuit will be helpful: We begin our journey at the 3 V source located at the far-left side of the diagram. As the current ( I ) moves upward and to the right, we encounter ourContinue reading INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 4 )

INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 3 )

Thus far, we have used a single-loop series circuit to demonstrate the principles of Kirchhoff’s Loop Rule. What if, however, a circuit has multiple loops through which current ( I ) travels? To further complicate things, what if each loop contains a voltage ( V ) source? How will it be possible to determine theContinue reading “INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 3 )”

ELECTRICITY: Kirchhoff’s Rules and Negative Current Values

Voltage, where V = IR, is the product of the current ( I ) of Amperes in an electrical circuit in units of coulombs per second ( q/s ), and resistance ( R ) in Ohms. Likewise, voltage is defined as the amount of energy in Joules ( J ) a coulomb of charge carriesContinue reading “ELECTRICITY: Kirchhoff’s Rules and Negative Current Values”