Two spherical bearings of mass ( m1 ) and ( m2 ) are attached by belt to a pulley that is situated between them. An electric motor is also attached to the pulley, and it is positioned between these masses. When the motor is turned on, the pulley provides 15.0 N of tension on theContinue reading “AP PHYSICS: Pulleys, Torque, Tension, and the Moment of Inertia”
Tag Archives: moment of inertia
ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision
1. Momentum is always conserved when collisions occur. Momentum is defined as being a quantity of motion, and it is a product of mass and velocity. A small object travelling with a high velocity has great momentum ( Ex. A bullet ), and a massive object travelling with a low velocity has great momentum (Continue reading “ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision”
ENERGY AND MOMENTUM: Translational and Rotational Kinetic Energy
When determining the final kinetic energy ( KE ) of falling objects, we need not ( in theory ) concern ourselves with anything other than the linear pathway traveled to the earth’s surface. To the contrary, an object that rolls top to bottom down an incline will gain both linear ( KE ) and rotationalContinue reading “ENERGY AND MOMENTUM: Translational and Rotational Kinetic Energy”
ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )
Q: A ( 1kg ) ball of clay moving with a velocity ( vbi ) collides and sticks to the end of a ( 120cm ) rod of uniform mass ( 2kg ). Assuming that the ball and rod are at rest upon a frictionless surface: ( a ) Where is the new center ofContinue reading “ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )”
ROTATIONAL MOTION: At What Rate will the Yo-Yo Accelerate?
Several forces must be taken into account to study the motion of a yo-yo. If we assume a hand to be stationary when a yo-yo begins its descent, a tension force acts upward upon the yo-yo’s string. Opposite to the tension force is the force exerted upon the system by the gravitational force of attractionContinue reading “ROTATIONAL MOTION: At What Rate will the Yo-Yo Accelerate?”
ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod
The moment of inertia ( I ) is the rotational equivalent of mass possessed by an object. This proclamation, however, comes with a caveat: massive objects are not created equal. Different objects of equal mass have differing abilities to resist changes in rotational motion. Additionally, the location of an object’s axis of rotation influences itsContinue reading “ENERGY AND MOMENTUM: Parallel Axis Theorem/Moment of Inertia of a Rod”
ENERGY AND MOMENTUM: Moment of Inertia and the Parallel Axis Theorem
Inertia is a measure of a system’s ability to resist a change in motion, and it is directly proportional to a system’s massiveness. Such a system or object could be stationary with respect to an observer, or it could move with a constant velocity. When a system moves with constant velocity with respect to anContinue reading “ENERGY AND MOMENTUM: Moment of Inertia and the Parallel Axis Theorem”
FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit
Q: A satellite circles a planet with a tangential velocity of 1.70 x 104 m/s. The orbital radius ( r1 ) is 5.25 x 106 m. A second satellite of equal mass revolves around the same planet with an orbital radius ( r2 ) of 8.60 x 106 m. What is the orbital speed ofContinue reading “FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit”
ROTATIONAL MOTION: Rotational Inertia
Q: A student sits atop a freely rotating stool holding two dumbbells, each of which has a mass of 3.09 kg. When the student’s arms are extended horizontally outward, the dumbbells are 0.99 m from the axis of rotation. There are 180 degrees of separation between the extended arms. The student rotates with an angularContinue reading “ROTATIONAL MOTION: Rotational Inertia”