AP PHYSICS: Force and Deceleration

Q: A vehicle weighing ( Fw ) 17.08 kN moves at a constant velocity ( v ) of 35.8 m/s. At some point, the driver decides to let the vehicle coast in neutral, during which air drag causes it to decelerate to 22.4 m/s in 24 s. ( a ) What is the magnitude ofContinue reading “AP PHYSICS: Force and Deceleration”

ENERGY AND MOMENTUM: Elastic Collision Determination ( Part 2 )

Q: An elastic collision occurs between two objects of mass ( m1 ) and ( m2 ). Prior to the collision, mass ( m2 ) is stationary and approached by ( m1 ) with a velocity ( v1 ). If only the values of ( m1 ), ( m2 ), and ( v1 ) areContinue reading “ENERGY AND MOMENTUM: Elastic Collision Determination ( Part 2 )”

ENERGY AND MOMENTUM: Final Velocity of Target and Projection After Elastic Collision ( Part 1 )

Q: Within a given system, a projectile moves with a constant velocity ( v1 ) prior to colliding with a stationary target of equal mass ( m1 = m2 ). Since the system is isolated from outside forces, momentum ( p ) and kinetic energy ( KE ) both are conserved during the collision. (Continue reading “ENERGY AND MOMENTUM: Final Velocity of Target and Projection After Elastic Collision ( Part 1 )”

FORCE AND ACCELERATION: 3-4-5 Right-Triangle Mathematics

Q: Two men attempt to pull a box in the diagram below: What is the resultant force in Newtons ( N ) exerted on the box? A: This is a classic question involving a 3-4-5 right triangle. Trigonometry and the Pythagorean Theorem enable us to solve the problem using the numbers 3, 4, and 5.Continue reading “FORCE AND ACCELERATION: 3-4-5 Right-Triangle Mathematics”

ENERGY AND MOMENTUM: What is the final velocity of the hovering disk?

Q: A disk of mass 0.5 kg slides with a constant velocity of 2.4 m/s over an air table before colliding with an elastic band. If the band exerts an average force of 1.4 Newtons on the disk for 1.5 seconds, what is the final velocity of the disc? A1: The disc will experience aContinue reading “ENERGY AND MOMENTUM: What is the final velocity of the hovering disk?”

FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit

Q: A satellite circles a planet with a tangential velocity of 1.70 x 104 m/s. The orbital radius ( r1 ) is 5.25 x 106 m. A second satellite of equal mass revolves around the same planet with an orbital radius ( r2 ) of 8.60 x 106 m. What is the orbital speed ofContinue reading “FORCE AND ACCELERATION: Relative Velocity of Satellites in Orbit”

FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams

Q: Three objects are connected by ropes that pass over massless and frictionless pulleys. As the objects move, the table exerts a force of friction on the middle object. The coefficient of kinetic friction is 0.100. What is the acceleration of the three objects within the system? What is the magnitude of the tension inContinue reading “FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams”

FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems

The law of conservation of energy states that the total energy of an isolated system remains constant. The SI unit of energy is the joule ( J ), and it’s base-unit composition is kg*m2/s2. Energy is the currency needed to perform work, and work is performed upon an object when an applied force moves itContinue reading “FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems”

ENERGY and MOMENTUM: How Fast Will the Block Move When a Compressed Spring is Released?

Q: A spring with a spring constant k = 100 N/m is compressed a distance ( x ) = 100 mm. A block with a mass ( m ) = 0.250 kg is placed next to the spring. The surface upon which the block rests is frictionless and horizontal. When the spring and block areContinue reading “ENERGY and MOMENTUM: How Fast Will the Block Move When a Compressed Spring is Released?”

FORCE AND ACCELERATION: The Gravitational Force of Attraction

Q: An arbitrary distance separates two objects of equal mass. If the mass of each object is doubled, and the distance between the two objects is tripled, how will the force of attraction between the two objects change? A: This question regards the gravitational force of attraction that exists between two objects with well-defined massesContinue reading “FORCE AND ACCELERATION: The Gravitational Force of Attraction”