INTRODUCTION TO ELECTRONICS: The Unbalanced Wheatstone Bridge and Sensor Technology

A transducer is an electronic device that measures physical parameters such as mechanical strain, pressure, optical density, and/or temperature. If temperature is being measured, an instrument called a thermistor acts as a variable resistor at the R1 location of a Wheatstone bridge. At a known neutral temperature, a zero reference voltage ( Vout ) valueContinue reading INTRODUCTION TO ELECTRONICS: The Unbalanced Wheatstone Bridge and Sensor Technology

INTRODUCTION TO ELECTRONICS: The Balanced Wheatstone Bridge

The voltage ( V ) drops across parallel-circuit resistors ( R ) are equal in magnitude; conversely, the currents ( I ) traveling through parallel branches may or may not be the same. For this reason, parallel circuits are sometimes referred to as being current dividers. Take the following diagram into consideration: Since the R1Continue reading INTRODUCTION TO ELECTRONICS: The Balanced Wheatstone Bridge

INTRODUCTION TO ELECTRONICS: Bleeder Current in Multi-Tap Voltage-Divider Circuits

Adding a tap to a series circuit alters the untapped voltage ( V ) output across the resistor ( R ) downstream of it. We will now expand our studies to be inclusive of multi-tap voltage-divider circuits. The objective is to determine the magnitude of the bleeder current ( I3 ) flowing through the lowermostContinue reading INTRODUCTION TO ELECTRONICS: Bleeder Current in Multi-Tap Voltage-Divider Circuits

INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 2 )

In a previous exercise, we saw how the addition of a stiff voltage divider to a two-resistor series circuit lowers the voltage ( V ) drop across the lattermost resistor. We are now ready to examine this phenomena with a circuit that contains unequal resistor values: Q: a. What is the unloaded output voltage?      b.Continue reading INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 2 )

INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )

A series circuit that contains two equal-value resistors ( R ) will split the amount of work ( J ) done by the charges equally: Prior to arrival at R1, a coulomb of charged particles ( I ) will contain 10.0 J of energy available to perform work. After passing through R1, the charges willContinue reading INTRODUCTION TO ELECTRONICS: Voltage Dividers With Resistive Loads ( Part 1 )

INTRODUCTION TO ELECTRONICS: Series-Parallel Circuit Branch Identification

Due to the complexity of some series-parallel circuits, it takes time to appropriately identify circuit branches that negate the larger circuit being classified as purely series or parallel. There is no substitute for practice! Prior to using the appropriate mathematics and equations to solve series-parallel circuit problems, visual engagement with a wide variety of circuitContinue reading INTRODUCTION TO ELECTRONICS: Series-Parallel Circuit Branch Identification

INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 2 )

The Loop Rule states that the sum of voltage ( V ) rises and drops around a closed loop must equal zero. This observation is an extension of the Law of Conservation of Energy which states that energy is neither created or destroyed, but it has the ability to change form. Furthermore, the direction thatContinue reading “INTRODUCTION TO ELECTRONICS: Kirchhoff’s Laws ( Part 2 )”

INTRODUCTION TO ELECTRONICS: Resistors in Series Circuits

The voltage ( V ) or “ potential difference “ of a DC power source is the drop in energy ( J ) that a coulomb ( C ) of charge will experience by traveling through a resistance ( R ) found within a circuit.  The current in question flows along a closed, non-diverging route:Continue reading “INTRODUCTION TO ELECTRONICS: Resistors in Series Circuits”

ELECTRICITY: Series and Parallel Electrical Circuits

Note: The problem is much easier when one is familiar with what a series vs. parallel circuit looks like. Fortunately, plenty of examples can be found on the internet. Q: Two resistors are submitted to a 12 V potential. When linked together, the current is of 1.33 A. When in parallel, the current is 5.4Continue reading “ELECTRICITY: Series and Parallel Electrical Circuits”

ELECTRICITY: Direct Current and Parallel Resistors

INTRODUCTION TO DIRECT CURRENT ( DC ) ELECTRONICS : Note: Assuming each resistor ( R ) = 64 Ohms, what is the equivalent resistance of the circuit from points A to B ? Symmetry regarding the flow of electrons is the key to calculating the total resistance ( R ) of this circuit. Let’s suppose theContinue reading “ELECTRICITY: Direct Current and Parallel Resistors”