Q: A loop that consists of 200 ( N ) turns and an area ( A ) of 0.25 m2 is located in a downward-directed magnetic field ( B ) of 0.40 T. Additionally, the loop’s coils have a resistance ( R ) of 5.0 Ω. If the coils are crushed to an area ofContinue reading “MAGNETISM AND ELECTROMAGNETISM: Lenz’ Law”
Tag Archives: Right-Hand Rule
MAGNETISM AND ELECTROMAGNETISM: Magnetism, Electromagnetic Induction, Lenz’s Law, and the Right-Hand Rule
Early experiments with magnetism revealed that a current-carrying wire is surrounded by circular lines of magnetic flux ( ɸ ). The orientation of this field could be predicted via usage of the Right-Hand Rule. These observations are indeed interesting, and they were made when the current ( I ) passing through a conductor was constant;Continue reading “MAGNETISM AND ELECTROMAGNETISM: Magnetism, Electromagnetic Induction, Lenz’s Law, and the Right-Hand Rule”
INTRODUCTION TO ELECTRONICS: Conventional Current, Kirchhoff’s Laws, Magnetic Fields, and the Right-Hand Rule
Conventional current refers to the convention in which electrical current ( I ) is considered to be a flow of positive charges. The usefulness of this convention is readily observable when dealing with Kirchoff’s Laws ( or Rules ) and the analysis of magnetic fields that encircle a conductor that carries a conventional current. OfContinue reading “INTRODUCTION TO ELECTRONICS: Conventional Current, Kirchhoff’s Laws, Magnetic Fields, and the Right-Hand Rule”
INTRODUCTION TO ELECTRONICS: Electromagnet Fundamentals
Thus far, we’ve seen how charge ( q ) in motion has the ability to give rise to magnetic fields ( B ) within certain material types. It will now be useful to see how certain rules are used to determine which direction this magnetic flux ( ɸ ) will travel within a given magneticContinue reading “INTRODUCTION TO ELECTRONICS: Electromagnet Fundamentals”
INTRODUCTION TO ELECTRONICS: Permeability and Reluctance of Magnetic Materials
Many uncanny comparisons can be made between the behavior of electric currents and magnetic flux ( ϕ ) within conductive materials. In the same way that some materials conduct current better than others, metallic materials differentially provide pathways through which magnetic flux can permeate. The permeability ( μ ) of any material is relative toContinue reading “INTRODUCTION TO ELECTRONICS: Permeability and Reluctance of Magnetic Materials”