AP PHYSICS: Vector Components

Q: A projectile flies with a velocity of 750 km per hour at a 300 angle south of east: What is the magnitude of the eastward component of motion? A: The projectile is moving both eastward and south simultaneously. The eastward component of motion is determined by using an appropriate trigonometric function that relates theContinue reading “AP PHYSICS: Vector Components”

AP PHYSICS: Vector Components

When vectors are oriented away from the ( x ) and ( y ) axes, they can be evaluated using ( x ) and ( y ) components. These components can be linked together in a tip-to-tail fashion which yields the same results as the primary vector in question: It is useful to imagine theContinue reading “AP PHYSICS: Vector Components”

AP PHYSICS: Vector Addition and Subtraction

A scalar quantity is one that is dimensionless in terms of direction and is expressed in terms that communicate their magnitude. Energy and time are two great examples of such. On the other hand, there are vectors. Unlike scalar quantities, vectors possess both magnitude and direction.  For example, an object can be considered to travelContinue reading “AP PHYSICS: Vector Addition and Subtraction”

ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 2 )

Q: Two subatomic particles have a charge of 1.0 x 10-6 C, and they are located on the x-axis at coordinates ( -1.0 m, 0.0 m ) and ( 1.0 m, 0.0 m ). Please calculate the following: The net electric field when a positive test charge ( P ) is situated at coordinates (Continue reading “ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 2 )”

ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 1 )

Q: Two subatomic particles have a charge ( q1 = q2 = 10-6 C ), and they are located on the x-axis at coordinates ( -1m, 0m ) and ( 1m, 0m ). Please calculate the following: The electric field due to the charges when a positive test charge ( P ) has x/y-coordinates ofContinue reading “ELECTROSTATICS: Unit Vector Analysis of a Two-Charge System ( Part 1 )”

ENERGY AND MOMENTUM: Stacked Ball Drop, Impulse, and the Galilean Transformation

Q: Three balls of mass m1, m2, and m3 fall together towards the earth. They accelerate until impact, and once the three-ball system collides elastically with the earth’s surface, the balls within the system approach one another with an instantaneous velocity ( v ). The momentum ( p = mv ) = ( m1 +Continue reading “ENERGY AND MOMENTUM: Stacked Ball Drop, Impulse, and the Galilean Transformation”