ROTATIONAL MOTION: At What Rate will the Yo-Yo Accelerate?

Several forces must be taken into account to study the motion of a yo-yo. If we assume a hand to be stationary when a yo-yo begins its descent, a tension force acts upward upon the yo-yoโ€™s string. Opposite to the tension force is the force exerted upon the system by the gravitational force of attractionContinue reading “ROTATIONAL MOTION: At What Rate will the Yo-Yo Accelerate?”

FORCE AND ACCELERATION: What is the mass of the climbing acrobat?

Q: Two acrobats, a pulley, and a rope are used in a circus act. Acrobat 1 rapidly climbs one of the suspended lengths of rope at a distance of 16ft in 2 seconds with a constant acceleration. On the opposite length of rope, acrobat 2 is suspended in an attached chair that remains motionless aboveContinue reading “FORCE AND ACCELERATION: What is the mass of the climbing acrobat?”

FORCE AND ACCELERATION: The Sum of all Torques Must Equal Zero

When a system is in static equilibrium, the sum of the forces acting upon the system must equal zero. In the diagram below, forces F1 and F2 exert torques upon the system: Recall that a torque ( ๐›• = Fr sin ฮธ ) has the ability to make a system rotate, and it is theContinue reading “FORCE AND ACCELERATION: The Sum of all Torques Must Equal Zero”

FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams

Q: Three objects are connected by ropes that pass over massless and frictionless pulleys. As the objects move, the table exerts a force of friction on the middle object. The coefficient of kinetic friction is 0.100. What is the acceleration of the three objects within the system? What is the magnitude of the tension inContinue reading “FORCE AND ACCELERATION: Pulleys, Tension, Friction, and Free-Body Diagrams”

FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems

The law of conservation of energy states that the total energy of an isolated system remains constant. The SI unit of energy is the joule ( J ), and itโ€™s base-unit composition is kg*m2/s2. Energy is the currency needed to perform work, and work is performed upon an object when an applied force moves itContinue reading “FORCE AND ACCELERATION: Mechanical Advantage and Tension Within Pulley Systems”